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Abstract
A new stochastic cellular automaton (CA) model of traffic flow, which includes
slow-to-start effects and a driver’s perspective, is proposed by extending the
Burgers CA and the Nagel–Schreckenberg CA model. The flow–density
relation of this model shows multiple metastable branches near the transition
density from free to congested traffic, which form a wide scattering area in
the fundamental diagram. The stability of these branches and their velocity
distributions are explicitly studied by numerical simulations.

PACS numbers: 05.65.+b, 45.70.Vn

1. Introduction

Traffic problems have been attracting not only engineers but also physicists [1]. Especially,
it has been widely accepted that the phase transition from free to congested traffic flow
can be understood using methods from statistical physics [2, 3]. In order to study the
transition in detail, we need a realistic model of traffic flow which should be minimal to
clarify the underlying mechanisms. In recent years cellular automata (CA) [4, 5] have been
used extensively to study traffic flow in this context. Due to their simplicity, CA models
have also been applied by engineers, e.g. for the simulation of complex traffic systems with
junctions and traffic signals [6].

Many traffic CA models have been proposed so far [2, 7, 8], and among these CA, the
deterministic rule-184 CA model (R184), which is one of the elementary CA classified by
Wolfram [4], is the prototype of all traffic CA models. R184 is known to represent the
minimum movement of vehicles in one lane and shows a simple phase transition from free to
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congested state of traffic flow. In a previous paper [9], using the ultra-discrete method [10],
the Burgers CA (BCA) has been derived from the Burgers equation

vt = 2vvx + vxx (1)

which was interpreted as a macroscopic traffic model [11]. The BCA is written using the
minimum function min by

Ut+1
j = Ut

j + min
{
Ut

j−1, L − Ut
j

} − min
{
Ut

j , L − Ut
j+1

}
(2)

where Ut
j denotes the number of vehicles at the site j and time t. If we put the restriction

L = 1, it can be easily shown that the BCA is equivalent to R184. Thus we have clarified the
connection between the Burgers equation and R184, which offers better understanding of the
relation between macroscopic and microscopic models.

The BCA given above is considered as the Euler representation of traffic flow. As in
hydrodynamics there is an another representation, called Lagrange representation [12], which
is specifically used for car-following models. The Lagrange version of the BCA is given
by [13]

xt+1
i = xt

i + min
{
Vmax, x

t
i+S − xt

i − S
}

(3)

where Vmax = S = L and xt
i is the position of the ith car at time t. Note that in (3), S

corresponds to a ‘perspective’ or anticipation parameter [14] which represents the interaction
horizon of drivers, that is, the number of cars that a driver sees in front, and Vmax is the
maximum velocity of cars. Anticipation effects are important for a realistic modelling of
traffic flow and have been incorporated in several other models [15–20]. Equation (3) is
derived from the BCA mathematically by using an Euler–Lagrange (EL) transformation [13]
which is a discrete version of the well-known EL transformation in hydrodynamics.

In this paper, we will develop the BCA (3) to a more realistic model by introducing slow-
to-start (s2s) effects [21–24] and a driver’s perspective S. Moreover, a stochastic generalization
is also considered by combining it with the Nagel–Schreckenberg (NS) model [8, 25].

2. Traffic models in Lagrange form

First, let us extend (3) to the case Vmax �= S and combine it with the s2s model. The s2s model
[12] is written in Lagrange form as

xt+1
i = xt

i + min
{
1, xt

i+1 − xt
i − 1, xt−1

i+1 − xt−1
i − 1

}
. (4)

Note that the inertia effect of cars is taken into account in this model. Comparing (4) and (3),
we see that in the s2s model, the velocity of a car depends not only on the present headway
dt

i = xt
i+1 − xt

i − 1, but also on the past headway dt−1
i = xt−1

i+1 − xt−1
i − 1. This rule has only

a nontrivial effect if dt−1
i = 0 and dt

i = 1, i.e. if the leading car has started to move in the
previous time step. In this case the following car is not allowed to move immediately (s2s).

Before combining (3) and (4), it is worth pointing out that we can choose the perspective
parameter as S = 2 in the model according to observed data. We define the size of a cell as
7.5 m and Vmax = 5 in our model according to the NS model. Since Vmax corresponds to about
100 km h−1 in reality, then one time step in the CA model becomes 1.3 s. Moreover, the gradient
of the free line and jamming line in the fundamental diagram, which is the dependence of the
traffic flow Q on density ρ, is known to be about 100 km h−1 and −15 km h−1 [3] according
to many observed data (see figure 1) [26, 27]. These values correspond to the typical free
velocity and the jam velocity, respectively. Thus, considering the fact that the positive and
negative gradients of each line are given by Vmax = 5 and −S/2, respectively, in the CA
model [12], we should choose S = 1.5. Since only integer numbers for S are allowed in this
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Figure 1. An observed fundamental diagram at the Tomei expressway in Japan. The gradients of
the free line (A−B) and jamming line (C−D) are known to be about 100 km h−1 and −15 km h−1,
respectively. We also see that there is a wide scattering area near the phase transition region from
free to jamming state.

model, we will simply choose S = 2 for studying the effect of the perspective of drivers. It is
noted that other possibilities, such as velocity-dependent S or stochastic choice of S, are also
possible.

Now by combining (3) and (4) we propose a new Lagrange model with S = 2 which is
defined by the rules listed below: let v

(0)
i be the velocity of the ith car at a time t. The update

procedure from t to t + 1 is divided into five stages:

(1) Acceleration

v
(1)
i = min

{
Vmax, v

(0)
i + 1

}
. (5)

(2) Slow-to-accelerate effect

v
(2)
i = min

{
v

(1)
i , xt−1

i+2 − xt−1
i − 2

}
. (6)

(3) Deceleration due to other vehicles

v
(3)
i = min

{
v

(2)
i , xt

i+2 − xt
i − 2

}
. (7)

(4) Avoidance of collision

v
(4)
i = min

{
v

(3)
i , xt

i+1 − xt
i − 1 + v

(3)
i+1

}
. (8)

(5) Vehicle movement

xt+1
i = xt

i + v
(4)
i . (9)

The velocity v
(4)
i is used as v

(0)
i in the next time step. Equation (8) is the condition that the ith

car does not overtake its preceding (i + 1)th car, including anticipation. Acceleration (5) is the
same as in the NS model, which is needed for mild accelerating behaviour of cars. In step 2,
we call (6) ‘slow-to-accelerate’ instead of s2s. This is because this rule affects not only the
behaviour of standing cars but also that of moving cars, which is a generalization of the usual
s2s rule.
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Figure 2. Collision-free condition between the ith and (i + k)th cars.
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Figure 3. Fundamental diagram of the new Lagrange model. Parameters are set to Vmax = 5 and
S = 2, and the spatial period is 100 sites. The initial car density is varied from 0.05 to 0.95 in steps
of 0.01. At each density, we start calculations from 30 randomly generated initial configurations,
and show only the data at the time t = 100. We observe several metastable branches in the
deterministic case. The fluctuations of the branches show the fact that the asymptotic flow of the
system sometimes becomes periodic instead of stationary between 0.2 � ρ � 0.5.

It is not difficult to write the new model in a single equation for general S. The result is

xt+1
i = xt

i + min
{
V t

i , min
k=1,...,S−1

(
xt

i+k − xt
i − k + V t

i+k

)}
(10)

where the last term represents the collision-free condition explained in figure 2, and

V t
i = min

{
Vmax, x

t−1
i+S − xt−1

i − S, xt
i+S − xt

i − S, xt
i − xt−1

i + 1
}
. (11)

The condition that there is no collision between the ith and (i + k)th cars (k = 1, . . . , S − 1)

is given by

xt
i+k − xt

i − k + V t
i+k � V t

i (12)

for S � 2 (if S = 1 then we simply put k = 1), which is identical to the last term in (10).
In contrast to the NS model, the velocity of the preceding car is taken into account in the
calculation of the safe velocity in step 4, i.e. our model also includes anticipation effects.

3. Metastable branches and their stability

Next, we investigate the fundamental diagram of this new hybrid model. In figure 3, we
observe a complex phase transition from a free to a congested state near the critical density
0.2–0.4. There are many metastable branches in the diagram, similar to our previous models
in Euler form [28, 29] or in other models with anticipation [20]. We also point out that there
is a wide scattering area near the critical density in the observed data (figure 1) which may be
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Figure 4. Spatio-temporal patterns of evolution of the uniform flow · · · 11000001100000 · · ·
at density ρ = 2/7 with different strengths of perturbation: (a) very weak, (b) less weak,
(c) medium, (d ) stronger and finally (e) strongest perturbation. The details of these perturbations
are all explained in detail in the text. The stationary state of these five cases corresponds to a state
in each metastable branch appearing in figure 3, although the branch corresponding to (a) does not
appear in the numerical simulations with random initial conditions.

related to these metastable branches. As we will discuss later, these branches may account for
some aspects of the scattering area observed empirically.

First, we discuss properties of the state in the metastable branches. In all cases it consists
of pairs of vehicles that move coherently with vanishing headway (see figure 4). Cars are
represented by black squares, and the direction of the road is horizontal right and time axis
is vertical down. The corresponding velocity distributions are also given in figure 5. We see
that there are stopping cars with zero velocity only in the case of the lowest branch given in
the state in figure 4(e).

Next let us calculate the flow–density relation for each branch. In the metastable branches
we find phase separation into a free-flow and a jamming region. In the former, pairs move
with velocity vf and a headway of df empty cells between consecutive pairs. In the jammed
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Figure 5. Velocity distributions in the case ρ = 2/7, corresponding to the states given in figure 4.

region, the velocity of the pairs is vj and the headway dj . Nj and Nf are the numbers of cars in
the jamming cluster and the free uniform flow, respectively. We assume Nf and Nj to be even
so that there are Nf /2 and Nj/2 pairs, respectively. Then the total number of cars N is given
by N = Nj +Nf and the total length of the system becomes l = (dj + 2)Nj/2 + (df + 2)Nf /2.
Since the average velocity is v̄ = (Nf vf + Njvj )/N and density and flow of the system are
given by ρ = N/l and Q = ρv̄, we obtain the flow–density relation as

Q = 2
vf − vj

df − dj

+

(
vj − (dj + 2)

vf − vj

df − dj

)
ρ. (13)

From the stationary states in figure 4 we have

(a) : (vf , vj , df , dj ) = (5, 4, 6, 4)

(b) : (vf , vj , df , dj ) = (5, 3, 7, 3)

(c) : (vf , vj , df , dj ) = (5, 2, 8, 2)

(d) : (vf , vj , df , dj ) = (5, 1, 9, 1)

(e) : (vf , vj , df , dj ) = (5, 0, 10, 0).

(14)
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Figure 6. A schematic diagram of the metastable branches (A, B, C and D) and the jamming line
(E ) in the new model. The highest flow state is represented by P0, which is quite unstable and easy
to go down to the lower flow state PA, . . . , PE according to the magnitude of the perturbation.

Therefore the resulting equations for each branch are

Q = 1 + cρ (15)

where c = 1, 1/2, 0,−1/2,−1, which correspond to the branches A,B,C,D and E in
figure 6, respectively. End points of the branches are found to be given by ρ1 = 2/(df + 2)

and ρ2 = 2/(dj + 2), where ρ1 is the point at which the metastable branches intersect the free
flow branch, and ρ2 is the maximal possible density in the metastable branches. Note that all
ρ2 lie on the line Q = −2ρ + 2, which is indicated as the broken line in figure 6. Note that for
higher velocity we get more branches than these which lie denser in the triangle.

Next let us study the stability of each metastable branch. We mainly consider the
density ρ = 2/7 and, in particular, we will focus on the uniform flow represented by
· · · 11000001100000 · · ·, which shows the highest flow given at the point P0 in figure 6.

Spatio-temporal patterns due to various kinds of perturbations are already seen in figure 4.
Perturbation in this case means that some cars are shifted backwards at the initial configuration.
The initial conditions for figures 4(a)–(e) are given as follows:

(a) Very weak perturbation (one car is shifted one site backwards)· · · 11000010100000 · · ·
(b) Weak perturbation (one car is shifted two sites backwards)· · · 11000100100000 · · ·
(c) Moderate perturbation (one car is shifted three sites backwards)· · · 11001000100000 · · ·
(d) Strong perturbation (one car is shifted five sites backwards)· · · 11100000100000 · · ·
(e) Strongest perturbation (three cars are shifted backwards) · · · 11111000000000 · · ·

The stationary states of (a), (b), (c), (d ) and (e) are given by the points PA, PB, PC, PD

and PE in figure 6, respectively. That is, if the system in P0 is perturbated, then the flow
easily goes down to a lower branch in the course of time depending on the magnitude of
the perturbation. Since the density does not change due to the perturbation, we obtain
PA : (2/7, 9/7), PB : (2/7, 8/7), PC : (2/7, 1), PD : (2/7, 6/7) and PE : (2/7, 5/7) by
substituting ρ = 2/7 into equation (15).

We see a jamming cluster propagating backwards in the cases of (d ) and (e) in figure 4. In
other cases the jamming cluster propagates forward ((a) and (b)) or does not move (c). These
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facts are related to the gradient of the metastable branches which are given by c according to
equation (15).

4. Stochastic generalization

Finally we will combine the above model with the NS model in order to take into account the
randomness of drivers’ behaviour. The NS model is written in Lagrange form as

xt+1
i = xt

i + max
{
0, min

{
V, xt

i+1 − xt
i − 1, xt

i − xt−1
i + 1

} − ηt
i

}
(16)

where ηt
i = 1 with probability p and ηt

i = 0 with probability 1 − p. The last term in the
minimum in (16) represents the acceleration of cars. The randomness in this model is a kind
of random braking effect, which is known to be responsible for spontaneous jam formation
often observed in real traffic [2]. We also consider random acceleration in this model which
is not taken into account in the NS model.

Thus a stochastic generalization of the hybrid model in the case of S = 2 is similarly
given by the following set of rules:

(1) Random acceleration

v
(1)
i = min

{
Vmax, v

(0)
i + ηa

}
(17)

where ηa = 1 with the probability pa and ηa = 0 with 1 − pa .
(2) Slow-to-accelerate effect

v
(2)
i = min

{
v

(1)
i , xt−1

i+S − xt−1
i − S

}
. (18)

(3) Deceleration due to other vehicles

v
(3)
i = min

{
v

(2)
i , xt

i+S − xt
i − S

}
. (19)

(4) Random braking

v
(4)
i = max

{
v

(3)
i − ηb, 0

}
(20)

where ηb = 1 with the probability pb and ηb = 0 with 1 − pb.
(5) Avoidance of collision

v
(n+1)
i = min

{
v

(n)
i , xt

i+1 − xt
i − 1 + v

(n)
i+1

}
(21)

with n � 4, which is an iterative equation that has to be applied until v converges to
v

(n+1)
i = v

(n)
i (≡ vi).

(6) Vehicle movement

xt+1
i = xt

i + vi. (22)

Again the velocity vi is used as v
(0)
i in the next time step. Step 5 must be applied to each car

iteratively until its velocity does not change any more, which ensures that this model is free
from collisions. We can say that it must be applied at most Vmax times. This is the difference
between the deterministic and stochastic cases. In the deterministic model it is sufficient to
apply the avoidance of collision stage only once in each update, while in the stochastic case
generically it has to be applied a few times in order to avoid collisions between successive
cars.

The fundamental diagrams of this stochastic model for some values of pa and pb are
given in figure 7. The randomization effect can be considered as a sort of perturbation to the
deterministic model. Hence some unstable branches seen in the deterministic case disappear
in the stochastic case, especially if we consider the random braking effect as seen in figure 7.
Random acceleration itself does not significantly destroy the metastable branches. Moreover,
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Figure 7. Fundamental diagrams and typical spatio-temporal patterns of the new stochastic model
with different values of random parameters. Parameters are set to Vmax = 5 and S = 2. Upper
two figures are the case of pa = 0 and pb = 0.2, middle ones are pa = 0.8 and pb = 0 and the
bottom ones are pa = 0.8 and pb = 0.2.

from the spatio-temporal pattern it is found that spontaneous jam formation is observed
only if we allow random braking. Random acceleration alone is not sufficient to produce
spontaneous jamming. We also note that a wider scattering area appears if we introduce both
random acceleration and braking.

5. Concluding discussions

In this paper we have proposed a new hybrid model of traffic flow of Lagrange type which
is a combination of the BCA and the s2s model. Its stochastic extension is also proposed by
further incorporating stochastic elements of the NS model and random acceleration. The model
shows several metastable branches around the critical density in its fundamental diagram. The
upper branches are unstable and will decrease its flow under perturbations. It is shown that
the magnitude of a perturbation determines the final value of flow in the stationary state.
Moreover, introduction of stochasticity in the model makes the metastable branches dilute and
hence produces a wide scattering area in the fundamental diagram. We would like to point
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out that this metastable region around the phase transition density is similar to the so-called
synchronized flow proposed by [30]. Our investigation shows that one possible origin of such
a region is the occurrence of many intermediate congested states near the critical density. If
some of them are unstable due to perturbation or randomness, then a dense scattering area
near the critical density is formed around the metastable branches. This is in some sense in
between the two cases of a fundamental diagram based approach (with unique flow–density
relation) and the so-called three-phase model of [31] which exhibits a full two-dimensional
region of allowed states even in the deterministic limit. In our model with larger Vmax, it is
noted that we come closer to a continuum of states.

Acknowledgment

This work is supported in part by a grant-in-aid from the Japan Ministry of Education, Science
and Culture.

References

[1] Helbing D, Herrmann H J, Schreckenberg M and Wolf D E (ed) 2000 Traffic and Granular Flow ’99 (Berlin:
Springer)

[2] Chowdhury D, Santen L and Schadschneider A 2000 Phys. Rep. 329 199
[3] Helbing D 2001 Rev. Mod. Phys. 73 1067
[4] Wolfram S 1986 Theory and Applications of Cellular Automata (Singapore: World Scientific)
[5] Chopard B and Droz M 1998 Cellular Automata Modeling of Physical Systems (Cambridge: Cambridge

University Press)
[6] Bandini S, Serra R and Liverani F S (ed) 1998 Cellular Automata: Research Towards Industry (Berlin: Springer)
[7] Fukui M and Ishibashi Y 1996 J. Phys. Soc. Japan 65 1868
[8] Nagel K and Schreckenberg M 1992 J. Phys. I France 2 2221
[9] Nishinari K and Takahashi D 1998 J. Phys. A: Math. Gen. 31 5439

[10] Tokihiro T, Takahashi D, Matsukidaira J and Satsuma J 1996 Phys. Rev. Lett. 76 3247
[11] Musya T and Higuchi H 1978 J. Phys. Soc. Japan 17 811
[12] Nishinari K 2001 J. Phys. A: Math. Gen. 34 10727
[13] Matsukidaira J and Nishinari K 2003 Phys. Rev. Lett. 90 088701
[14] Nishinari K and Takahashi D 2000 J. Phys. A: Math. Gen. 33 7709
[15] Fuks H and Boccara N 1998 Int. J. Mod. Phys. C 9 1
[16] Knospe W, Santen L, Schadschneider A and Schreckenberg M 1999 Physica A 265 614
[17] Knospe W, Santen L, Schadschneider A and Schreckenberg M 2000 J. Phys. A: Math. Gen. 33 L477
[18] Li X, Wu Q and Jiang R 2001 Phys. Rev. E 64 066128
[19] Eissfeldt N and Wagner P 2003 Eur. Phys. J. B 33 121
[20] Larraga M E, del Rio J A and Schadschneider A 2003 Preprint cond-mat/0306531
[21] Takayasu M and Takayasu H 1993 Fractals 1 860
[22] Benjamin S C and Johnson N F 1996 J. Phys. A: Math. Gen. 29 3119
[23] Schadschneider A and Schreckenberg M 1997 Ann. Phys., NY 6 541
[24] Barlovic R, Santen L, Schadschneider A and Schreckenberg M 1998 Eur. Phys. J. B 5 793
[25] Schreckenberg M, Schadschneider A, Nagel K and Ito N 1995 Phys. Rev. E 51 2939
[26] Nishinari K and Hayashi M 1999 Traffic Statistics in Tomei Express Way (Nagoya: The Mathematical Society

of Traffic Flow)
[27] Treiber M, Hennecke A and Helbing D 2000 Phys. Rev. E 62 1805
[28] Nishinari K and Takahashi D 1999 J. Phys. A: Math. Gen. 32 93
[29] Fukui M, Nishinari K, Takahashi D and Ishibashi Y 2002 Physica A 303 226
[30] Kerner B S and Rehborn H 1996 Phys. Rev. E 53 1297
[31] Kerner B S, Klenov S L and Wolf D E 2002 J. Phys. A: Math. Gen. 35 9971


